Copied to
clipboard

G = C33⋊D5order 270 = 2·33·5

3rd semidirect product of C33 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, A-group

Aliases: C333D5, C324D15, C3⋊(C3⋊D15), (C3×C15)⋊5S3, C5⋊(C33⋊C2), C151(C3⋊S3), (C32×C15)⋊1C2, SmallGroup(270,29)

Series: Derived Chief Lower central Upper central

C1C32×C15 — C33⋊D5
C1C5C15C3×C15C32×C15 — C33⋊D5
C32×C15 — C33⋊D5
C1

Generators and relations for C33⋊D5
 G = < a,b,c,d,e | a3=b3=c3=d5=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 1160 in 112 conjugacy classes, 57 normal (5 characteristic)
C1, C2, C3, C5, S3, C32, D5, C15, C3⋊S3, C33, D15, C3×C15, C33⋊C2, C3⋊D15, C32×C15, C33⋊D5
Quotients: C1, C2, S3, D5, C3⋊S3, D15, C33⋊C2, C3⋊D15, C33⋊D5

Smallest permutation representation of C33⋊D5
On 135 points
Generators in S135
(1 94 49)(2 95 50)(3 91 46)(4 92 47)(5 93 48)(6 96 51)(7 97 52)(8 98 53)(9 99 54)(10 100 55)(11 101 56)(12 102 57)(13 103 58)(14 104 59)(15 105 60)(16 106 61)(17 107 62)(18 108 63)(19 109 64)(20 110 65)(21 111 66)(22 112 67)(23 113 68)(24 114 69)(25 115 70)(26 116 71)(27 117 72)(28 118 73)(29 119 74)(30 120 75)(31 121 76)(32 122 77)(33 123 78)(34 124 79)(35 125 80)(36 126 81)(37 127 82)(38 128 83)(39 129 84)(40 130 85)(41 131 86)(42 132 87)(43 133 88)(44 134 89)(45 135 90)
(1 34 19)(2 35 20)(3 31 16)(4 32 17)(5 33 18)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)(46 76 61)(47 77 62)(48 78 63)(49 79 64)(50 80 65)(51 81 66)(52 82 67)(53 83 68)(54 84 69)(55 85 70)(56 86 71)(57 87 72)(58 88 73)(59 89 74)(60 90 75)(91 121 106)(92 122 107)(93 123 108)(94 124 109)(95 125 110)(96 126 111)(97 127 112)(98 128 113)(99 129 114)(100 130 115)(101 131 116)(102 132 117)(103 133 118)(104 134 119)(105 135 120)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 86 81)(77 87 82)(78 88 83)(79 89 84)(80 90 85)(91 101 96)(92 102 97)(93 103 98)(94 104 99)(95 105 100)(106 116 111)(107 117 112)(108 118 113)(109 119 114)(110 120 115)(121 131 126)(122 132 127)(123 133 128)(124 134 129)(125 135 130)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)
(1 5)(2 4)(6 11)(7 15)(8 14)(9 13)(10 12)(16 31)(17 35)(18 34)(19 33)(20 32)(21 41)(22 45)(23 44)(24 43)(25 42)(26 36)(27 40)(28 39)(29 38)(30 37)(46 91)(47 95)(48 94)(49 93)(50 92)(51 101)(52 105)(53 104)(54 103)(55 102)(56 96)(57 100)(58 99)(59 98)(60 97)(61 121)(62 125)(63 124)(64 123)(65 122)(66 131)(67 135)(68 134)(69 133)(70 132)(71 126)(72 130)(73 129)(74 128)(75 127)(76 106)(77 110)(78 109)(79 108)(80 107)(81 116)(82 120)(83 119)(84 118)(85 117)(86 111)(87 115)(88 114)(89 113)(90 112)

G:=sub<Sym(135)| (1,94,49)(2,95,50)(3,91,46)(4,92,47)(5,93,48)(6,96,51)(7,97,52)(8,98,53)(9,99,54)(10,100,55)(11,101,56)(12,102,57)(13,103,58)(14,104,59)(15,105,60)(16,106,61)(17,107,62)(18,108,63)(19,109,64)(20,110,65)(21,111,66)(22,112,67)(23,113,68)(24,114,69)(25,115,70)(26,116,71)(27,117,72)(28,118,73)(29,119,74)(30,120,75)(31,121,76)(32,122,77)(33,123,78)(34,124,79)(35,125,80)(36,126,81)(37,127,82)(38,128,83)(39,129,84)(40,130,85)(41,131,86)(42,132,87)(43,133,88)(44,134,89)(45,135,90), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75)(91,121,106)(92,122,107)(93,123,108)(94,124,109)(95,125,110)(96,126,111)(97,127,112)(98,128,113)(99,129,114)(100,130,115)(101,131,116)(102,132,117)(103,133,118)(104,134,119)(105,135,120), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135), (1,5)(2,4)(6,11)(7,15)(8,14)(9,13)(10,12)(16,31)(17,35)(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)(30,37)(46,91)(47,95)(48,94)(49,93)(50,92)(51,101)(52,105)(53,104)(54,103)(55,102)(56,96)(57,100)(58,99)(59,98)(60,97)(61,121)(62,125)(63,124)(64,123)(65,122)(66,131)(67,135)(68,134)(69,133)(70,132)(71,126)(72,130)(73,129)(74,128)(75,127)(76,106)(77,110)(78,109)(79,108)(80,107)(81,116)(82,120)(83,119)(84,118)(85,117)(86,111)(87,115)(88,114)(89,113)(90,112)>;

G:=Group( (1,94,49)(2,95,50)(3,91,46)(4,92,47)(5,93,48)(6,96,51)(7,97,52)(8,98,53)(9,99,54)(10,100,55)(11,101,56)(12,102,57)(13,103,58)(14,104,59)(15,105,60)(16,106,61)(17,107,62)(18,108,63)(19,109,64)(20,110,65)(21,111,66)(22,112,67)(23,113,68)(24,114,69)(25,115,70)(26,116,71)(27,117,72)(28,118,73)(29,119,74)(30,120,75)(31,121,76)(32,122,77)(33,123,78)(34,124,79)(35,125,80)(36,126,81)(37,127,82)(38,128,83)(39,129,84)(40,130,85)(41,131,86)(42,132,87)(43,133,88)(44,134,89)(45,135,90), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75)(91,121,106)(92,122,107)(93,123,108)(94,124,109)(95,125,110)(96,126,111)(97,127,112)(98,128,113)(99,129,114)(100,130,115)(101,131,116)(102,132,117)(103,133,118)(104,134,119)(105,135,120), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135), (1,5)(2,4)(6,11)(7,15)(8,14)(9,13)(10,12)(16,31)(17,35)(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)(30,37)(46,91)(47,95)(48,94)(49,93)(50,92)(51,101)(52,105)(53,104)(54,103)(55,102)(56,96)(57,100)(58,99)(59,98)(60,97)(61,121)(62,125)(63,124)(64,123)(65,122)(66,131)(67,135)(68,134)(69,133)(70,132)(71,126)(72,130)(73,129)(74,128)(75,127)(76,106)(77,110)(78,109)(79,108)(80,107)(81,116)(82,120)(83,119)(84,118)(85,117)(86,111)(87,115)(88,114)(89,113)(90,112) );

G=PermutationGroup([[(1,94,49),(2,95,50),(3,91,46),(4,92,47),(5,93,48),(6,96,51),(7,97,52),(8,98,53),(9,99,54),(10,100,55),(11,101,56),(12,102,57),(13,103,58),(14,104,59),(15,105,60),(16,106,61),(17,107,62),(18,108,63),(19,109,64),(20,110,65),(21,111,66),(22,112,67),(23,113,68),(24,114,69),(25,115,70),(26,116,71),(27,117,72),(28,118,73),(29,119,74),(30,120,75),(31,121,76),(32,122,77),(33,123,78),(34,124,79),(35,125,80),(36,126,81),(37,127,82),(38,128,83),(39,129,84),(40,130,85),(41,131,86),(42,132,87),(43,133,88),(44,134,89),(45,135,90)], [(1,34,19),(2,35,20),(3,31,16),(4,32,17),(5,33,18),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30),(46,76,61),(47,77,62),(48,78,63),(49,79,64),(50,80,65),(51,81,66),(52,82,67),(53,83,68),(54,84,69),(55,85,70),(56,86,71),(57,87,72),(58,88,73),(59,89,74),(60,90,75),(91,121,106),(92,122,107),(93,123,108),(94,124,109),(95,125,110),(96,126,111),(97,127,112),(98,128,113),(99,129,114),(100,130,115),(101,131,116),(102,132,117),(103,133,118),(104,134,119),(105,135,120)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,86,81),(77,87,82),(78,88,83),(79,89,84),(80,90,85),(91,101,96),(92,102,97),(93,103,98),(94,104,99),(95,105,100),(106,116,111),(107,117,112),(108,118,113),(109,119,114),(110,120,115),(121,131,126),(122,132,127),(123,133,128),(124,134,129),(125,135,130)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135)], [(1,5),(2,4),(6,11),(7,15),(8,14),(9,13),(10,12),(16,31),(17,35),(18,34),(19,33),(20,32),(21,41),(22,45),(23,44),(24,43),(25,42),(26,36),(27,40),(28,39),(29,38),(30,37),(46,91),(47,95),(48,94),(49,93),(50,92),(51,101),(52,105),(53,104),(54,103),(55,102),(56,96),(57,100),(58,99),(59,98),(60,97),(61,121),(62,125),(63,124),(64,123),(65,122),(66,131),(67,135),(68,134),(69,133),(70,132),(71,126),(72,130),(73,129),(74,128),(75,127),(76,106),(77,110),(78,109),(79,108),(80,107),(81,116),(82,120),(83,119),(84,118),(85,117),(86,111),(87,115),(88,114),(89,113),(90,112)]])

69 conjugacy classes

class 1  2 3A···3M5A5B15A···15AZ
order123···35515···15
size11352···2222···2

69 irreducible representations

dim11222
type+++++
imageC1C2S3D5D15
kernelC33⋊D5C32×C15C3×C15C33C32
# reps1113252

Matrix representation of C33⋊D5 in GL6(𝔽31)

100000
010000
001000
000100
0000125
00001218
,
11280000
3190000
0019300
00281100
00001826
00001912
,
11280000
3190000
00112800
0031900
0000125
00001218
,
010000
30180000
000100
00301800
000010
000001
,
010000
100000
0003000
0030000
000010
00002630

G:=sub<GL(6,GF(31))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,5,18],[11,3,0,0,0,0,28,19,0,0,0,0,0,0,19,28,0,0,0,0,3,11,0,0,0,0,0,0,18,19,0,0,0,0,26,12],[11,3,0,0,0,0,28,19,0,0,0,0,0,0,11,3,0,0,0,0,28,19,0,0,0,0,0,0,12,12,0,0,0,0,5,18],[0,30,0,0,0,0,1,18,0,0,0,0,0,0,0,30,0,0,0,0,1,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,30,0,0,0,0,30,0,0,0,0,0,0,0,1,26,0,0,0,0,0,30] >;

C33⋊D5 in GAP, Magma, Sage, TeX

C_3^3\rtimes D_5
% in TeX

G:=Group("C3^3:D5");
// GroupNames label

G:=SmallGroup(270,29);
// by ID

G=gap.SmallGroup(270,29);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-5,41,182,723,5404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽