metabelian, supersoluble, monomial, A-group
Aliases: C33⋊3D5, C32⋊4D15, C3⋊(C3⋊D15), (C3×C15)⋊5S3, C5⋊(C33⋊C2), C15⋊1(C3⋊S3), (C32×C15)⋊1C2, SmallGroup(270,29)
Series: Derived ►Chief ►Lower central ►Upper central
C32×C15 — C33⋊D5 |
Generators and relations for C33⋊D5
G = < a,b,c,d,e | a3=b3=c3=d5=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 1160 in 112 conjugacy classes, 57 normal (5 characteristic)
C1, C2, C3, C5, S3, C32, D5, C15, C3⋊S3, C33, D15, C3×C15, C33⋊C2, C3⋊D15, C32×C15, C33⋊D5
Quotients: C1, C2, S3, D5, C3⋊S3, D15, C33⋊C2, C3⋊D15, C33⋊D5
(1 94 49)(2 95 50)(3 91 46)(4 92 47)(5 93 48)(6 96 51)(7 97 52)(8 98 53)(9 99 54)(10 100 55)(11 101 56)(12 102 57)(13 103 58)(14 104 59)(15 105 60)(16 106 61)(17 107 62)(18 108 63)(19 109 64)(20 110 65)(21 111 66)(22 112 67)(23 113 68)(24 114 69)(25 115 70)(26 116 71)(27 117 72)(28 118 73)(29 119 74)(30 120 75)(31 121 76)(32 122 77)(33 123 78)(34 124 79)(35 125 80)(36 126 81)(37 127 82)(38 128 83)(39 129 84)(40 130 85)(41 131 86)(42 132 87)(43 133 88)(44 134 89)(45 135 90)
(1 34 19)(2 35 20)(3 31 16)(4 32 17)(5 33 18)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)(46 76 61)(47 77 62)(48 78 63)(49 79 64)(50 80 65)(51 81 66)(52 82 67)(53 83 68)(54 84 69)(55 85 70)(56 86 71)(57 87 72)(58 88 73)(59 89 74)(60 90 75)(91 121 106)(92 122 107)(93 123 108)(94 124 109)(95 125 110)(96 126 111)(97 127 112)(98 128 113)(99 129 114)(100 130 115)(101 131 116)(102 132 117)(103 133 118)(104 134 119)(105 135 120)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 86 81)(77 87 82)(78 88 83)(79 89 84)(80 90 85)(91 101 96)(92 102 97)(93 103 98)(94 104 99)(95 105 100)(106 116 111)(107 117 112)(108 118 113)(109 119 114)(110 120 115)(121 131 126)(122 132 127)(123 133 128)(124 134 129)(125 135 130)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)
(1 5)(2 4)(6 11)(7 15)(8 14)(9 13)(10 12)(16 31)(17 35)(18 34)(19 33)(20 32)(21 41)(22 45)(23 44)(24 43)(25 42)(26 36)(27 40)(28 39)(29 38)(30 37)(46 91)(47 95)(48 94)(49 93)(50 92)(51 101)(52 105)(53 104)(54 103)(55 102)(56 96)(57 100)(58 99)(59 98)(60 97)(61 121)(62 125)(63 124)(64 123)(65 122)(66 131)(67 135)(68 134)(69 133)(70 132)(71 126)(72 130)(73 129)(74 128)(75 127)(76 106)(77 110)(78 109)(79 108)(80 107)(81 116)(82 120)(83 119)(84 118)(85 117)(86 111)(87 115)(88 114)(89 113)(90 112)
G:=sub<Sym(135)| (1,94,49)(2,95,50)(3,91,46)(4,92,47)(5,93,48)(6,96,51)(7,97,52)(8,98,53)(9,99,54)(10,100,55)(11,101,56)(12,102,57)(13,103,58)(14,104,59)(15,105,60)(16,106,61)(17,107,62)(18,108,63)(19,109,64)(20,110,65)(21,111,66)(22,112,67)(23,113,68)(24,114,69)(25,115,70)(26,116,71)(27,117,72)(28,118,73)(29,119,74)(30,120,75)(31,121,76)(32,122,77)(33,123,78)(34,124,79)(35,125,80)(36,126,81)(37,127,82)(38,128,83)(39,129,84)(40,130,85)(41,131,86)(42,132,87)(43,133,88)(44,134,89)(45,135,90), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75)(91,121,106)(92,122,107)(93,123,108)(94,124,109)(95,125,110)(96,126,111)(97,127,112)(98,128,113)(99,129,114)(100,130,115)(101,131,116)(102,132,117)(103,133,118)(104,134,119)(105,135,120), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135), (1,5)(2,4)(6,11)(7,15)(8,14)(9,13)(10,12)(16,31)(17,35)(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)(30,37)(46,91)(47,95)(48,94)(49,93)(50,92)(51,101)(52,105)(53,104)(54,103)(55,102)(56,96)(57,100)(58,99)(59,98)(60,97)(61,121)(62,125)(63,124)(64,123)(65,122)(66,131)(67,135)(68,134)(69,133)(70,132)(71,126)(72,130)(73,129)(74,128)(75,127)(76,106)(77,110)(78,109)(79,108)(80,107)(81,116)(82,120)(83,119)(84,118)(85,117)(86,111)(87,115)(88,114)(89,113)(90,112)>;
G:=Group( (1,94,49)(2,95,50)(3,91,46)(4,92,47)(5,93,48)(6,96,51)(7,97,52)(8,98,53)(9,99,54)(10,100,55)(11,101,56)(12,102,57)(13,103,58)(14,104,59)(15,105,60)(16,106,61)(17,107,62)(18,108,63)(19,109,64)(20,110,65)(21,111,66)(22,112,67)(23,113,68)(24,114,69)(25,115,70)(26,116,71)(27,117,72)(28,118,73)(29,119,74)(30,120,75)(31,121,76)(32,122,77)(33,123,78)(34,124,79)(35,125,80)(36,126,81)(37,127,82)(38,128,83)(39,129,84)(40,130,85)(41,131,86)(42,132,87)(43,133,88)(44,134,89)(45,135,90), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75)(91,121,106)(92,122,107)(93,123,108)(94,124,109)(95,125,110)(96,126,111)(97,127,112)(98,128,113)(99,129,114)(100,130,115)(101,131,116)(102,132,117)(103,133,118)(104,134,119)(105,135,120), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135), (1,5)(2,4)(6,11)(7,15)(8,14)(9,13)(10,12)(16,31)(17,35)(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)(30,37)(46,91)(47,95)(48,94)(49,93)(50,92)(51,101)(52,105)(53,104)(54,103)(55,102)(56,96)(57,100)(58,99)(59,98)(60,97)(61,121)(62,125)(63,124)(64,123)(65,122)(66,131)(67,135)(68,134)(69,133)(70,132)(71,126)(72,130)(73,129)(74,128)(75,127)(76,106)(77,110)(78,109)(79,108)(80,107)(81,116)(82,120)(83,119)(84,118)(85,117)(86,111)(87,115)(88,114)(89,113)(90,112) );
G=PermutationGroup([[(1,94,49),(2,95,50),(3,91,46),(4,92,47),(5,93,48),(6,96,51),(7,97,52),(8,98,53),(9,99,54),(10,100,55),(11,101,56),(12,102,57),(13,103,58),(14,104,59),(15,105,60),(16,106,61),(17,107,62),(18,108,63),(19,109,64),(20,110,65),(21,111,66),(22,112,67),(23,113,68),(24,114,69),(25,115,70),(26,116,71),(27,117,72),(28,118,73),(29,119,74),(30,120,75),(31,121,76),(32,122,77),(33,123,78),(34,124,79),(35,125,80),(36,126,81),(37,127,82),(38,128,83),(39,129,84),(40,130,85),(41,131,86),(42,132,87),(43,133,88),(44,134,89),(45,135,90)], [(1,34,19),(2,35,20),(3,31,16),(4,32,17),(5,33,18),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30),(46,76,61),(47,77,62),(48,78,63),(49,79,64),(50,80,65),(51,81,66),(52,82,67),(53,83,68),(54,84,69),(55,85,70),(56,86,71),(57,87,72),(58,88,73),(59,89,74),(60,90,75),(91,121,106),(92,122,107),(93,123,108),(94,124,109),(95,125,110),(96,126,111),(97,127,112),(98,128,113),(99,129,114),(100,130,115),(101,131,116),(102,132,117),(103,133,118),(104,134,119),(105,135,120)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,86,81),(77,87,82),(78,88,83),(79,89,84),(80,90,85),(91,101,96),(92,102,97),(93,103,98),(94,104,99),(95,105,100),(106,116,111),(107,117,112),(108,118,113),(109,119,114),(110,120,115),(121,131,126),(122,132,127),(123,133,128),(124,134,129),(125,135,130)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135)], [(1,5),(2,4),(6,11),(7,15),(8,14),(9,13),(10,12),(16,31),(17,35),(18,34),(19,33),(20,32),(21,41),(22,45),(23,44),(24,43),(25,42),(26,36),(27,40),(28,39),(29,38),(30,37),(46,91),(47,95),(48,94),(49,93),(50,92),(51,101),(52,105),(53,104),(54,103),(55,102),(56,96),(57,100),(58,99),(59,98),(60,97),(61,121),(62,125),(63,124),(64,123),(65,122),(66,131),(67,135),(68,134),(69,133),(70,132),(71,126),(72,130),(73,129),(74,128),(75,127),(76,106),(77,110),(78,109),(79,108),(80,107),(81,116),(82,120),(83,119),(84,118),(85,117),(86,111),(87,115),(88,114),(89,113),(90,112)]])
69 conjugacy classes
class | 1 | 2 | 3A | ··· | 3M | 5A | 5B | 15A | ··· | 15AZ |
order | 1 | 2 | 3 | ··· | 3 | 5 | 5 | 15 | ··· | 15 |
size | 1 | 135 | 2 | ··· | 2 | 2 | 2 | 2 | ··· | 2 |
69 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | S3 | D5 | D15 |
kernel | C33⋊D5 | C32×C15 | C3×C15 | C33 | C32 |
# reps | 1 | 1 | 13 | 2 | 52 |
Matrix representation of C33⋊D5 ►in GL6(𝔽31)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 12 | 18 |
11 | 28 | 0 | 0 | 0 | 0 |
3 | 19 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 3 | 0 | 0 |
0 | 0 | 28 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 26 |
0 | 0 | 0 | 0 | 19 | 12 |
11 | 28 | 0 | 0 | 0 | 0 |
3 | 19 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 28 | 0 | 0 |
0 | 0 | 3 | 19 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 12 | 18 |
0 | 1 | 0 | 0 | 0 | 0 |
30 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 30 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 26 | 30 |
G:=sub<GL(6,GF(31))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,5,18],[11,3,0,0,0,0,28,19,0,0,0,0,0,0,19,28,0,0,0,0,3,11,0,0,0,0,0,0,18,19,0,0,0,0,26,12],[11,3,0,0,0,0,28,19,0,0,0,0,0,0,11,3,0,0,0,0,28,19,0,0,0,0,0,0,12,12,0,0,0,0,5,18],[0,30,0,0,0,0,1,18,0,0,0,0,0,0,0,30,0,0,0,0,1,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,30,0,0,0,0,30,0,0,0,0,0,0,0,1,26,0,0,0,0,0,30] >;
C33⋊D5 in GAP, Magma, Sage, TeX
C_3^3\rtimes D_5
% in TeX
G:=Group("C3^3:D5");
// GroupNames label
G:=SmallGroup(270,29);
// by ID
G=gap.SmallGroup(270,29);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-5,41,182,723,5404]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations